Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583631

RESUMO

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Aerossóis/análise , COVID-19/prevenção & controle , COVID-19/transmissão , Ventilação , Carga Viral , Modelos Teóricos , Controle de Infecções/métodos , Medição de Risco
2.
Environ Int ; 185: 108502, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368717

RESUMO

The tobacco emission condensate, henceforth referred to as "tobacco condensate," plays a critical role in assessing the toxicity of tobacco products. This condensate, derived from tobacco emissions, provides an optimized liquid concentrate for storage and concentration control. Thus, the validation of its constituents is vital for toxicity assessments. This study used tobacco condensates from 3R4F cigarettes and three heated tobacco product (HTP) variants to quantify and contrast organic compounds (OCs) therein. The hazard index (HI) for tobacco emissions and condensates was determined to ascertain the assessment validity. The total particulate matter (TPM) for 3R4F registered at 17,667 µg cig-1, with its total OC (TOC) at 3777 µg cig-1. HTPs' TPM and TOC were 9342 ± 1918 µg cig-1 and 5258 ± 593 µg stick-1, respectively. 3R4F's heightened TPM likely arises from tar, while HTPs' OC concentrations are influenced by vegetable glycerin (2236-2688 µg stick-1) and propylene glycol (589-610 µg stick-1). During the condensation process, a substantial proportion of OCs in 3R4F smoke underwent significant concentration decreases, in contrast to HTPs, where fewer than half of the examined OCs exhibited notable concentration declines. The HI for tobacco emissions exhibited a marginally higher value compared to tobacco condensate, with variations ranging from 7.92% (HTPs) to 18.6% (3R4F), denoting a minimal differential. These observations emphasize the importance of accurate OC recovery techniques to maintain the validity and reliability of toxicity assessments based on tobacco condensates. This study not only deepens the comprehension of chemical behaviors in tobacco products but also establishes a novel benchmark for their toxicity evaluation, with profound implications for public health strategies and consumer protection.


Assuntos
Produtos do Tabaco , Aerossóis/análise , Material Particulado/toxicidade , Material Particulado/química , Reprodutibilidade dos Testes , Fumaça , Produtos do Tabaco/análise
3.
Environ Pollut ; 343: 123208, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142028

RESUMO

The study's primary focus lies in examining the relationship between respiratory and deposition doses of bacterial aerosols in urban kindergarten, providing valuable insights into the specific doses absorbed by individuals in different sections of their respiratory systems based on the aerodynamic diameter of bacterial particles. Samples were collected twice a week, using by an Andersen cascade impactor during autumn and winter seasons 2018/2019 resulting in a total of 1152 Petri dishes analyzed. The highest average concentration of bacterial aerosol was observed during autumn (1698 ± 663 CFU/m3) in comparison to winter months (723 ± 134 CFU/m3). Respirable doses for children and staff were 2945 and 2441 CFU/day during winter and 5988 and 4964 CFU/day during autumn, respectively. Deposition doses incorporated from empirical models for regional deposition in the respiratory tract showed that children in kindergarten absorb 33% less of bacteria into alveolar region if breath by nose instead of mouth. Additionally, risk assessment results indicate that the hazard indices for children attending kindergartens for 3 years and for staff working 25 years are below 1, suggesting minor risks associated with the inhalation of bioaerosols during autumn and winter. HI was <1, so the non-carcinogenic effects are on an acceptable level, but the indoor/outdoor ratio were 3.5 and 2.4 for autumn and winter, respectively, indicating children's and adult's exposure to bacterial aerosol should be reduced.


Assuntos
Bactérias , Instituições Acadêmicas , Criança , Humanos , Tamanho da Partícula , Polônia , Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental/métodos
4.
Environ Res ; 239(Pt 2): 117246, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806474

RESUMO

BACKGROUND: The spatiotemporal and demographic disparities in exposure to ultrafine particles (UFP; number concentrations of particulate matter (PM) with diameter ≤0.1 µm), a key subcomponent of fine aerosols (PM2.5; mass concentrations of PM ≤ 2.5 µm), have not been well studied. OBJECTIVE: To quantify and compare the aerosol pollutant exposure disparities for UFP and PM2.5 by socio-demographic factors in New York State (NYS). METHODS: Ambient atmospheric UFP and PM2.5 were quantified using a global three-dimensional model of chemical transport with state-of-the-science aerosol microphysical processes validated extensively with observations. We matched these to U.S. census demographic data for varied spatial scales (state, county, county subdivision) and derived population-weighted aerosol exposure estimates. Aerosol exposure disparities for each demographic and socioeconomic (SES) indicator, with a focus on race-ethnicity and income, were quantified for the period 2013-2020. RESULTS: The average NYS resident was exposed to 4451 #·cm-3 UFP and 7.87 µg·m-3 PM2.5 in 2013-2020, but minority race-ethnicity groups were invariably exposed to greater daily aerosol pollution (UFP: +75.0% & PM2.5: +16.2%). UFP has increased since 2017 and is temporally and seasonally out-of-phase with PM2.5. Race-ethnicity exposure disparities for PM2.5 have declined over time; by -6% from 2013 to 2017 and plateaued thereafter despite its decreasing concentrations. In contrast, these disparities have increased (+12.5-13.5%) for UFP. The aerosol pollution exposure disparities were the highest for low-income minorities and were more amplified for UFP than PM2.5. DISCUSSION: We identified large disparities in aerosol pollution exposure by urbanization level and socio-demographics in NYS residents. Jurisdictions with higher proportions of race-ethnicity minorities, low-income residents, and greater urbanization were disproportionately exposed to higher concentrations of UFP and PM2.5 than other NYS residents. These race-ethnicity exposure disparities were much larger, more disproportionate, and unabating over time for UFP compared to PM2.5 across various income strata and levels of urbanicity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , New York , Monitoramento Ambiental/métodos , Exposição Ambiental/análise , Aerossóis/análise , Demografia , Poluição do Ar/análise
5.
Sci Rep ; 13(1): 18066, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872255

RESUMO

Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.


Assuntos
Poluição do Ar em Ambientes Fechados , Fungos , Humanos , Bactérias Gram-Negativas , Antibacterianos/análise , Poluição do Ar em Ambientes Fechados/análise , Bactérias Gram-Positivas , Bactérias , Alternaria , Microbiologia do Ar , Monitoramento Ambiental/métodos , Aerossóis/análise
6.
Arch Environ Contam Toxicol ; 85(3): 314-323, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733035

RESUMO

210Po (polonium), one of the most toxic naturally occurring radionuclides, is well-known as a common natural radionuclide in fish species. Human consumption of 210Po-contaminated fish could result in a significant internal dose. This study determined by alpha spectrometry the 210Po activity in sixteen selected fish species with different living behaviors (pelagic, demersal), trophic positions (herbivores, carnivores, omnivorous), and masses in Dong Thai Lake, Hanoi, Vietnam. The min, max, and average of the 210Po concentration of sixteen fish species were 0.80 ± 0.44, 12.7 ± 0.20, and 3.54 ± 0.31 Bq kg-1, respectively. Regarding the different living behaviors, trophic positions, and masses, the results showed trending of 210Popelagic > 210Podemersal; 210Poherbivores < 210Pocarnivores < 210Poomnivorous and 210Po<0.2 kg > 210Po0.2-1 kg > 210Po>1 kg, respectively. The 210Po concentrations in muscle tissue were greater in fish species with a small mass, omnivorous trophic position, and pelagic living behavior relative to demersal fish with a larger mass that were herbivores or carnivores. In addition, the results showed an uneven distribution of 210Po activities in atmospheric aerosols, terrestrial soils, surface waters, and lake sediments in the study area. The primary source of 210Po could be supplied from atmospheric aerosols and/or terrestrial soils in the study area. The 210Po annual effective dose for adults due to fish consumption has been calculated with a range from 20 to 400 µSv y-1 and 111 µSv. y-1 on average, and it is far below the allowable limits of 1000 µSv y-1.


Assuntos
Peixes , Lagos , Polônio , Monitoramento de Radiação , Animais , Aerossóis/análise , Lagos/química , Solo/química , Vietnã , Polônio/análise , Poluição Ambiental/análise
7.
Chemosphere ; 336: 139283, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348616

RESUMO

The present study reports the development of a bioassay using Artemia spp. to analyse the preliminary ecotoxicity of atmospheric aerosols (PM), which can affect the environment and human health. Herein, PM samples were collected in the city of Goiânia (Brazil) in 2016, extracted with ultrapure water and subsequently filtered through membranes with different pore sizes (100, 0.8, and 0.22 µm), and the extracts employed in the bioassays. The mortality rates (endpoint analysed) declined to membranes with smaller pore sizes (15 ± 4%, 47 ± 10% and 43 ± 9% for pore sizes of 100 µm, 0.8 µm and 0.22 µm, respectively). In general, the toxicity of the extract depended on its concentration, except for the sample with a higher negative particle surface charge, which presents a lower affinity for the negatively charged surfaces of cellular membranes. Moreover, although the PM concentration was higher for the sample collected during the dry season (September), the mortality rate was not significantly different to that determined for a sample with similar physical and chemical characteristics collected in the rainy season (December). This result demonstrates the importance of monitoring PM toxicities and their chemical and physical characteristics, in addition to their concentrations. Therefore, the new protocol to provide a preliminary analysis of the toxicity of the extracts of aerosol emerges as a useful, accessible, and fast tool for monitoring possible environmental hazards, and can simplify fieldwork.


Assuntos
Poluentes Atmosféricos , Artemia , Humanos , Animais , Brasil , Aerossóis/toxicidade , Aerossóis/análise , Bioensaio , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
8.
Sci Rep ; 13(1): 7337, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147406

RESUMO

The Jazmurian basin in Iran is an area affected by climate change and desertification where aerosols and dust storms are common. The aim of this work was to determine the human and ecological risks from atmospheric particles during dust storms in different cities in the Jazmurian basin. For this purpose, the dust samples were collected from Jiroft, Roodbar Jonoob, Ghaleh Ganj, Kahnooj and Iranshahr cities, which are located around the Jazmurian playa in southeast of Iran. Satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products and the Aerosol Optical Depth (AOD) were used to detect aerosol loading in the atmosphere. Moreover, the trace element composition of the collected particles was determined and used to evaluate human and ecological impact assessment using US EPA human health risk assessment and ReCiPe 2016 endpoint hierarchist impact assessment method incorporated in the OpenLCA 1.10.3 software. The human health risk assessment of the particles revealed high non-carcinogenic risks for children from exposure to nickel and manganese and carcinogenic risks in both adults and children due to hexavalent chromium, arsenic and cobalt during dust storm events. Terrestrial ecotoxicity was found to have the largest ecological impact on ecosystems with copper, nickel and zinc exhibiting the largest contributions.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Níquel , Irã (Geográfico) , Ecossistema , Poeira/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Cidades , Medição de Risco , Aerossóis/análise , Monitoramento Ambiental/métodos , China
9.
J Occup Environ Hyg ; 20(9): 401-413, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163743

RESUMO

Home healthcare workers (HHCWs) can be occupationally exposed to bioaerosols in their clients' homes. However, choosing the appropriate method to measure bioaerosol exposures remains a challenge. Therefore, a systematic comparison of existing measurement approaches is essential. Bioaerosol measurements with a real-time, fluorescence-based Wideband Integrated Bioaerosol Sensor (WIBS) were compared to measurements with four traditional off-line methods (TOLMs). The TOLMS included optical microscopic counting of spore trap samples, microbial cultivation of impactor samples, qPCR, and next-generation sequencing (NGS) of filter samples. Measurements were conducted in an occupied apartment simulating the environments that HHCWs could encounter in their patients' homes. Descriptive statistics and Spearman's correlation test were computed to compare the real-time measurement with those of each TOLM. The results showed that the geometric mean number concentrations of the total fluorescent aerosol particles (TFAPs) detected with the WIBS were several orders of magnitude higher than those of total fungi or bacteria measured with the TOLMs. Among the TOLMs, concentrations obtained with qPCR and NGS were the closest to the WIBS detections. Correlations between the results obtained with the WIBS and TOLMs were not consistent. No correlation was found between the concentrations of fungi detected using microscopic counting and any of the WIBS fluorescent aerosol particle (FAP) types, either indoors or outdoors. In contrast, the total concentrations detected with microbial cultivation correlated with the WIBS TFAP results, both indoors and outdoors. Outdoors, the total concentration of culturable bacteria correlated with FAP-type AC. In addition, fungal and bacterial concentrations obtained with qPCR correlated with FAP types AB and AC. For a continuous, high-time resolution but broad scope, the real-time WIBS could be considered, whereas a TOLM would be the best choice for specific and more accurate microbial characterization. HHCWs' activities tend to re-aerosolize bioaerosols causing wide temporal variation in bioparticle concentrations. Thus, the advantage of using the real-time instrument is to capture those variations. This study lays a foundation for future exposure assessment studies targeting HHCWs.


Assuntos
Poluição do Ar em Ambientes Fechados , Serviços de Assistência Domiciliar , Humanos , Leitura , Monitoramento Ambiental/métodos , Bactérias/genética , Aerossóis/análise , Microbiologia do Ar , Fungos/genética , Poluição do Ar em Ambientes Fechados/análise
10.
Sci Total Environ ; 892: 164455, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37245820

RESUMO

Hydrogen peroxide (H2O2), hydroxyl radicals (OH), hydroperoxyl (HO2), and superoxide (O2-) radicals interacting with aerosol particles significantly affect the atmospheric pollutant budgets. A multiphase chemical kinetic box model (PKU-MARK), including the multiphase processes of transition metal ions (TMI) and their organic complexes (TMI-OrC), was built to numerically drive H2O2 chemical behaviors in the aerosol particle liquid phase using observational data obtained from a field campaign in rural China. Instead of relying on fixed uptake coefficient values, a thorough simulation of multiphase H2O2 chemistry was performed. In the aerosol liquid phase, light-driven TMI-OrC reactions promote OH, HO2/O2-, and H2O2 recycling and spontaneous regenerations. The in-situ generated aerosol H2O2 would offset gas-phase H2O2 molecular transfer into the aerosol bulk phase and promote the gas-phase level. When combined with the multiphase loss and in-situ aerosol generation involving TMI-OrC mechanism, the HULIS-Mode significantly improves the consistency between modeled and measured gas-phase H2O2 levels. Aerosol liquid phase could be a pivotal potential source of aqueous H2O2 and influence the multiphase budgets. Our work highlights the intricate and significant effects of aerosol TMI and TMI-OrC interactions on the multiphase partitioning of H2O2 when assessing atmospheric oxidant capacity.


Assuntos
Poluentes Atmosféricos , Complexos de Coordenação , Peróxidos , Peróxido de Hidrogênio , Poluentes Atmosféricos/análise , Aerossóis/análise
11.
Environ Pollut ; 331(Pt 1): 121832, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209897

RESUMO

There is a growing need to apply geospatial artificial intelligence analysis to disparate environmental datasets to find solutions that benefit frontline communities. One such critically needed solution is the prediction of health-relevant ambient ground-level air pollution concentrations. However, many challenges exist surrounding the size and representativeness of limited ground reference stations for model development, reconciling multi-source data, and interpretability of deep learning models. This research addresses these challenges by leveraging a strategically deployed, extensive low-cost sensor (LCS) network that was rigorously calibrated through an optimized neural network. A set of raster predictors with varying data quality and spatial scales was retrieved and processed, including gap-filled satellite aerosol optical depth products and airborne LiDAR-derived 3D urban form. We developed a multi-scale, attention-enhanced convolutional neural network model to reconcile the LCS measurements and multi-source predictors for estimating daily PM2.5 concentration at 30-m resolution. This model employs an advanced approach by using the geostatistical kriging method to generate a baseline pollution pattern and a multi-scale residual method to identify both regional patterns and localized events for high-frequency feature retention. We further used permutation tests to quantify the feature importance, which has rarely been done in DL applications in environmental science. Finally, we demonstrated one application of the model by investigating the air pollution inequality issue across and within various urbanization levels at the block group scale. Overall, this research demonstrates the potential of geospatial AI analysis to provide actionable solutions for addressing critical environmental issues.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Inteligência Artificial , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Material Particulado/análise
12.
Anal Bioanal Chem ; 415(17): 3375-3384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37154936

RESUMO

In organic purity assessment, chromatography separation with a suitable detector is required. Diode array detection (DAD) has been a widely used technique for high-performance liquid chromatography (HPLC) analyses, but its application is limited to compounds with sufficient UV chromophores. Charged aerosol detector (CAD), as a mass-dependent detector, is advantageous for providing a nearly uniform response for analytes, regardless of their structures. In this study, 11 non-volatile compounds with/without UV chromophores were analyzed by CAD using continuous direct injection mode. The RSDs of CAD responses were within 17%. For saccharides and bisphenols, especially, the RSDs were lower (2.12% and 8.14%, respectively). Since bisphenols exist in UV chromophores, their HPLC-DAD responses were studied and compared with CAD responses, with CAD showing a more uniform response. Besides, the key parameters of HPLC-CAD were optimized and the developed method was verified using a Certified Reference Material (CRM, dulcitol, GBW06144). The area normalization result of dulcitol measured by HPLC-CAD was 99.89% ± 0.02% (n = 6), consistent with the certified value of 99.8% ± 0.2% (k = 2). The result of this work indicated that the HPLC-CAD method could be a good complementary tool to traditional techniques for the purity assessment of organic compounds, especially for compounds lacking UV chromophores.


Assuntos
Compostos Benzidrílicos , Fenóis , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/análise , Aerossóis/análise , Compostos Benzidrílicos/análise
13.
J Occup Environ Hyg ; 20(7): 279-288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084405

RESUMO

Loose-fitting powered air-purifying respirators (PAPRs) are used in healthcare settings, although barriers to routine, everyday usage remain, including usability concerns and potential interference with work activities. Loose-fitting PAPRs are approved by the National Institute for Occupational Safety and Health (NIOSH) and must meet minimum performance requirements, including a minimum airflow requirement of 170 L/min. One course of action to address usability concerns is to allow for the use of PAPRs designed with reduced airflow rates. The primary objective of this study was to assess the effect of PAPR flow rate and user work rate on PAPR performance, using a manikin-based assessment method. PAPR performance was quantified using the "Manikin Fit Factor" (mFF), a ratio of the challenge aerosol concentration to the in-facepiece concentration. Flow rates from 50-215 L/min and low, moderate, and high work rates were tested. Two models of NIOSH Approved loose-fitting facepiece PAPRs were tested, both having an Occupational Safety and Health Administration Assigned Protection Factor (APF) or expected level of protection, of 25. A two-way analysis of variance with an effect size model was run for each PAPR model to analyze the effects of work rate and flow rate on PAPR performance. Flow rate and work rate were found to be significant variables impacting PAPR performance. At low and moderate work rates and flow rates below the NIOSH minimum of 170 L/min, mFF was greater than or equal to 250, which is 10 times the OSHA APF of 25 for loose-fitting facepiece PAPRs. At high work rates and flow rates below 170 L/min, mFF was not greater than or equal to 250. These results suggest that some loose-fitting facepiece PAPRs designed with a flow rate lower than the current NIOSH requirement of 170 L/min may provide respirator users with expected protection at low and moderate work rates. However, when used at high work rates, some loose-fitting facepiece PAPRs designed with lower flow rates may not provide the expected level of protection.


Assuntos
Coloboma , Exposição Ocupacional , Dispositivos de Proteção Respiratória , Humanos , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Manequins , Aerossóis/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-37107880

RESUMO

A sequence of dust intrusions occurred from the Sahara Desert to the central Mediterranean in the second half of June 2021. This event was simulated by means of the Weather Research and Forecasting coupled with chemistry (WRF-Chem) regional chemical transport model (CTM). The population exposure to the dust surface PM2.5 was evaluated with the open-source quantum geographical information system (QGIS) by combining the output of the CTM with the resident population map of Italy. WRF-Chem analyses were compared with spaceborne aerosol observations derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and, for the PM2.5 surface dust concentration, with the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. Considering the full-period (17-24 June) and area-averaged statistics, the WRF-Chem simulations showed a general underestimation for both the aerosol optical depth (AOD) and the PM2.5 surface dust concentration. The comparison of exposure classes calculated for Italy and its macro-regions showed that the dust sequence exposure varies with the location and entity of the resident population amount. The lowest exposure class (up to 5 µg m-3) had the highest percentage (38%) of the population of Italy and most of the population of north Italy, whereas more than a half of the population of central, south and insular Italy had been exposed to dust PM2.5 in the range of 15-25 µg m-3. The coupling of the WRF-Chem model with QGIS is a promising tool for the management of risks posed by extreme pollution and/or severe meteorological events. Specifically, the present methodology can also be applied for operational dust forecasting purposes, to deliver safety alarm messages to areas with the most exposed population.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poeira/análise , Sistemas de Informação Geográfica , Poluentes Atmosféricos/análise , Estudos Retrospectivos , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Aerossóis/análise , Material Particulado/análise
15.
J Hazard Mater ; 452: 130687, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989774

RESUMO

Agitation operations produce numerous pathogenic bioaerosols in WWTPs1. QMRA2 can determine risks of persons exposed to these bioaerosols. However, QMRA framework cannot help stakeholders in immediately deciding whether a risk is intolerable. Thus, evaluating threshold of acceptable exposure concentration is an urgent issue but is still rarely addressed in WWTPs. This study analyzed TLV3 benchmarks of E. coli and S. aureus bioaerosols emitted from a WWTP by reverse-QMRA. Furthermore, variance of input parameters was clarified by sensitivity analysis. Results showed that, under conservative and optimistic estimates, TLV of technicians was 1.52-2.06 and 1.26-1.68 times as large as those of workers, respectively; wearing mask drive TLV up to 1-2 orders of magnitude; TLV of M4 was at most 1.33 and 1.31 times as large as that of RD5, respectively. For sensitivity analysis, removal fraction by equipping PPE enlarge TLV for effortlessly obtaining an acceptable assessment result; exposure time was dominant when without PPE excepting the scenario of technicians exposed to E. coli bioaerosol. This study helps establish threshold guidelines for bioaerosols in WWTPs and contribute innovative perspectives for stakeholders.


Assuntos
Águas Residuárias , Purificação da Água , Humanos , Escherichia coli , Staphylococcus aureus , Níveis Máximos Permitidos , Medição de Risco , Aerossóis/análise , Microbiologia do Ar
16.
Sci Total Environ ; 879: 162986, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958548

RESUMO

Many studies have focused on aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (AHs and PAHs) in different environmental compartments, especially atmospheric particles (aerosols), due to their adverse effects on the environment and human health. However, much less information is currently available on the content of AHs and PAHs in the atmospheric gas phase, which is a major reservoir of volatile and photoreactive compounds. Here, for the first time, we assessed the levels, gas-particle partitioning, human health risks and seasonal variations of AHs and PAHs in the atmospheric gas-phase of Bizerte city (Tunisia, North Africa) over a one-year period (March 2015-January 2016). Σ34PAH concentration in the gas phase over the period ranged from 6.7 to 90.6 ng m-3 and on average was 2.5 times higher in the cold season than in the warm season. Σ28AH concentration in the gas phase over the period ranged from 14.0 to 35.9 ng m-3, with no clear seasonal variations. In the gas phase, hydrocarbons were dominated by low-molecular-weight (LMW) compounds, i.e. 3- and 4-ring for PAHs and < n-C24 for AHs. Gas-phase concentrations of PAHs and AHs accounted for up to 80 % of the total (gas + particle phases) atmospheric concentrations of PAHs and AHs. Further analysis of gas-particle partitioning showed that LMW hydrocarbons preferential accumulated in the gas phase, and that gas-particle partitioning was not in equilibrium but dominated by absorption processes into the aerosol organic matter. Benzo[a]pyrene toxic equivalency quotient (BaP-TEQ) in the gas phase represented on average 37 % of the total atmospheric BaP-TEQ concentration, which was always higher in the cold season. Atmospheric gas is a significant factor in the risks of cancer associated with inhalation of ambient air. The Monte Carlo simulation-based exposure assessment model predicted that outdoor air exposure to PAHs does not pose a cancer risk to infants, but the children, adolescent, and adult populations may face a lower cancer risk during the warm season and a higher risk in the cold season.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Criança , Humanos , Adolescente , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Tunísia , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Aerossóis/análise , Material Particulado/análise
17.
NanoImpact ; 30: 100459, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36948454

RESUMO

Engineered Nanomaterials (ENMs) have several uses in various industrial fields and are embedded in a myriad of consumer products. However, there is continued concern over the potential adverse health effects and environmental impacts of ENMs due to their unique physico-chemical characteristics. Currently, there are no specific international regulations for various ENMs. There are also no Occupational Exposure Limits (OEL) regulated by the European Union (EU) for nanomaterials in the form of nano-objects, their aggregates or agglomerates (NOAA). For ENMs the question of which metric to be used (i.e., mass, surface area, number concentrations) to determine the exposure is still not resolved. The aim of this work is to assess the worker exposure by inhalation in an industrial spray coating process by using all three metrics mentioned above. Two target ENMs (N-doped TiO2, TiO2N and AgNPs capped with a quaternized hydroxyethyl-cellulose, AgHEC) generated for industrial-scale spraying processes were considered. Results showed that the averaged particle number concentration (10-100 nm) was below 2.7 104 cm-3 for both materials. The Lung Deposited Surface Area (LDSA) was in the range between 73 and 98 µm2cm-3 and the particle mass concentration (obtained by means of ICP-EOS off-line analysis) resulted below 70 µg m-3 and 0.4 µg m-3 for TiO2 and Ag, respectively. Although, the airborne particles concentration compared well with the NIOSH Recommended Exposure Level (REL) limits the contribution to the background, according to EN 17058 (Annex E) was significant (particularly in the particle number and PM1 mass concentrations). We successfully evaluated the worker exposure by means of the different airborne particles' metrics (number, surface and mass concentrations). We concluded that worker exposure assessment involving ENMs is a complex procedure with requires both real time and off-line measurements and a deep investigation of the background.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poluentes Ocupacionais do Ar/análise , Tamanho da Partícula , Exposição Ocupacional/efeitos adversos , Aerossóis/análise
18.
Environ Sci Pollut Res Int ; 30(15): 43279-43299, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652079

RESUMO

The interrelationships between air quality, land cover change, and road networks in the Lagos megacity have not been explored. Globally, there are knowledge gaps in understanding these dynamics, especially using remote sensing data. This study used multi-temporal and multi-spectral Landsat imageries at four epochs (2002, 2013, 2015, and 2020) to evaluate the aerosol optical thickness (AOT) levels in relation to land cover and road networks in the Lagos megacity. A look-up table (LUT) was generated using Py6S, a python-based 6S module, to simulate the AOT using land surface reflectance and top of atmosphere reflectance. A comparative assessment of the method against in situ measurements of particulate matter (PM) at different locations shows a strong positive correlation between the imagery-derived AOT values and the PMs. The AOT concentration across the land cover and road networks showed an increasing trend from 2002 to 2020, which could be explained by urbanization in the megacity. The higher concentration of AOT along the major roads is attributed to the high air pollutants released from vehicles, including home/office generators and industries along the road corridors. The continuous rise in pollutant values requires urgent intervention and mitigation efforts. Remote sensing-based AOT monitoring is a possible solution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Monitoramento Ambiental/métodos , Nigéria , Poluentes Atmosféricos/análise , Material Particulado/análise , Aerossóis/análise
19.
Sci Total Environ ; 860: 160447, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36442626

RESUMO

Aerosol optical properties play an important role in affecting direct aerosol radiative forcing (DARF). However, DARF estimation is still uncertain due to the complexity of aerosol optical properties. Therefore, in this study, the spatiotemporal distributions of aerosol properties and their effects on DARF in China from 2004 to 2020 are investigated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The results show that the aerosol optical parameters vary greatly and change with seasonal regularity, which is greatly affected by human activities. The control variable method was employed on aerosol optical properties for better estimation of DARF. Single scattering albedo (SSA) has the greatest effect on DARF, followed by aerosol optical depth (AOD) and the asymmetric factor (ASY) among the seven examined stations in China. The average DARF decreases by 4.2 % when the SSA increases by 0.3 % but increases by 34.7 % when the SSA decreases by 3 % in mainland China. When the AOD changes from -60 to +60 %, DARF changes from -54.7 % to +58.4 %. The variation in DARF is between -3 % and +3 % when the ASY varies from -30 % to +30 %. The instability in DARF resulted from the complicated and volatile nature of aerosol optical properties in the region; the aerosol optical properties are greatly affected by the aerosol types and relative humidity. The results of this study have important reference significance for understanding the variation of DARF and formulating pollution prevention and control policies in the region.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , China , Aerossóis/análise
20.
Environ Int ; 171: 107708, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571994

RESUMO

North Korea's air quality is poorly understood due to a lack of reliable data. Here, we analyzed urban- to national-scale air quality changes in North Korea using multi-year satellite observations. Pyongyang, Nampo, Pukchang, and Munchon were identified as pollution hotspots. On a national scale, we found that North Korea experienced 6.7, 17.8, and 20.6 times greater amounts of nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) per unit primary energy supply (PES) than South Korea from 2005 to 2018. Besides, North Korea had a 24.3 times larger aerosol optical depth (AOD) per PES than South Korea from 2011 to 2018. Severe CO and aerosol pollution is aligned with extensive biofuel combustion. High SO2 pollution corresponds with the strong coal dependence of the industry. The change rates of the national average columns for NO2, SO2, and CO were + 3.6, -4.4, and -0.4 % yr-1, respectively. The AOD change rate was -4.8 % yr-1. Overall decreasing trends, except for NO2, are likely due to a decline in coal-fired PES. Positive NO2 trends are consistent with increasing industrial activities. Each pollutant showed consistent patterns of linear trends, even after correcting the influence of transboundary pollution. Flue gas control and biofuel consumption reduction seem necessary to improve North Korea's air quality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , República Democrática Popular da Coreia , Biocombustíveis , Monitoramento Ambiental , Poluição do Ar/análise , Carvão Mineral , Aerossóis/análise , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA